1,095 research outputs found

    Research on multi-resolution texture model in three-dimensional GIS

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    An efficient framework for estimation of muscle fiber orientation using ultrasonography

    Get PDF
    2013-2014 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys

    Get PDF
    This work studies the effect of heat treatment of carbon-dispersed platinum and platinum alloys on its methanol tolerance and catalytic activity as gas diffusion electrodes for oxygen reduction reaction (ORR) in acid medium. The catalyst powders were subjected to heat treatments at three different temperatures for a fixed period at controlled atmospheres. Differences in catalyst morphology were characterized using X-ray diffraction, energy dispersive X-ray analysis and transmission electron microscope techniques. The electrochemical characteristics and activity of the electro-catalysts were evaluated for ORR and methanol tolerance using cyclic voltammetry, in the form of gas diffusion electrodes. The optimum heat-treatment temperature is found to be strongly dependent on the individual catalyst. The maximum ORR activity and better methanol tolerance for the oxygen reduction reaction (ORR) was observed in Pt-Fe/C and Pt-Cu/C catalysts subjected to heat treatment at 350 °C.A trend of catalytic activity for oxygen reduction reaction (ORR) was obtained: Pt-Cu/C (350°C)>Pt-Fe/C (350°C) > Pt-Ni/C (350°C) > Pt-Co/C (250°C) > Pt/C (350°C), showing that Pt-Cu/C-type catalysts had a higher catalytic activity with reasonable methanol tolerance

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page

    Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies

    Get PDF
    Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending
    corecore